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Abstract

In this paper, we derive and generalize the methods of Buneman
for solving elliptic partial difference equations in a rectangular
region. We show why the Buneman methods lead to numerically accurate :
solutions whereas the CORF algorithm may be numerically unstable.

Several numerical examples are given and discussed.
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Introduction

In the first part of this report, we described several direct
methods for solving linear equations arising from elliptic partial
difference equations. In this part, we develop the Buneman algorithms
which are closely related to the Cyclic 0dd/Even Reduction and
Factorization (CORF) algorithm which was derived in the first part.
We ‘d\'.ca‘rﬂﬁgw why the CORF algorithm is numerically unstable whereas
the Buneman algorithms yield numerically accurate results. Finally,
we describe some numerical examples and compare the time and accuracy

of several methods for solving then.
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‘ t 10. Accuracy of the CORF algorithm
i

As will be shown in Section 11, the CORF algorithm and the Buneman

’ P{ algorithms are mathematically identical. The difference between the
! = methods lies in the way the right hand side is calculated at each
‘ J stage of the reduction. To the authors' knowledge, this is the only
¥ direct method for solving linear equations in which the right hand side

of the equations plays an important rdle in the numerical solution of

)

the equations. In this section, we show the difficulties encountered

in using the CORF algorithm. In Section 13, we will prove the stability

[o——

of the Buneman algorithms.

Recall from Section 3 that it is possible to compute A(r)ygr)

. -
| SR )

by the following algorithm:

I

(r) (r)
T =2 s n = Ay

3

(10.1)
B Og = Al - Teﬂs-z for &5 8,5y.tdhie
ﬂ so that
) (F
I 7, = A
2 ~
n Because of roundoff error, one actually computes the sequence
n lb='2i'§)’31=“~§,’()+§o
u (10.2)
~ ~ 2 2
Mg = BAng ) =T Mot 85 (s = 2y...,2%)
10-1
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where 8s is the perturbation induced by the roundoff error. Again

as in Section 2, we write
A=QA)t , T=qoql (10.3)

where Q is the set of orthonormalized eigenvectors of A and T,
and A and () are the diagonal matrices of eigenvalues of A and T,

respectively. Thus substituting (10.3) into (10.2), we have

- 1
o= » bL=-3AEtT (10.ke)
£ o=-AE_ -0t 47 (10.b4b)
28 28=-1 28-2 o8-l *
where
- AT (r) _ AT~ _ AT
Z—Q‘XJ » Eg =0 Ns IS-Q‘ES )

Because A and ( are diagonal, we may write an equation for each

component of gs s viz.

+ ol (3 =1,2...,0) .  (10.5)

thbse 9y bys T

T

E'J, s+l Js 8

The solution of (10.5) can be given explicitly. Consider the characteristic

equation

= of 2 _
qaj(a)=a +";]°‘+f°3’°

which has roots B 3 and 7 j? then

10-2
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5 s s-1 s=-1
_ B, - : B -7 ‘
“3,8 7 B '-"'173 117 Py BT, R0
5-1 gs-k _ sk
J g
+ kE:l Bj =7 5k when BJ. # 7, (10 .€8)

S=k-1 o

_ .a5-1 C (e_1)aRS §=1 _
= s; €1 (s 1)53 §3’°+1§1 (s-k)BJ. j,x When By =7, . (10.6b)

Let

-N,/2w, = cos @ when |>~J/2wj| g1

cosh z when |hj/2w3| >1

Then using the initial conditions (10.4a), we may write (10.6a) as

follows:

s-1 sin (s-k)o
= oS - T | S=k-1l J
gJ,s - 2‘”;] coEles Od)yj * kL=o ®5 sin OJ Ti,k
when l)sj/ijl 2 (10.7a)
_ s . 81 ., sinh (s-k)zJ.
= -2, cosh(s ZJ)yJ + kgo . T Tk
when |7‘J/2“’J| 31 . (10.7p)
Note that
10-3




cos s O,
s
- . = K l 08
2033 X Ps( J,wd) ( 0 )
cosh s zj )

given in Section 3. Thus

G- rmny® + Foas o (10.9)
Ng = Fg\b2l¥y s-k © .k *
k=0
* where
sinm @,
oy when |xj/2wj| <1 and i=]
m-1
8,05y = <) x <
sinh m z
sinh z, N lhj/ijl >1 and 1=
J
\
=0 for i#j

Therefore, if |Kj/2w3| > 1, the effect of the roundoff
error can be catastrophic. However, if |xj/2wj| <1, we see from

(10.9) that } r may be a good numerical approximation to A(r)ygr) .

2
We now apply the above results to Poisson's equation with
Dirichlet boundary conditions. For the five point difference operator
with mesh width Ax in the x-direction and Ay in the y-direction,

we have

_ 2 Pk -
N = 2[l+p(l-cosp+1)]: w; =1

10-4



=

=

N o= R —= R =~ B o~ I oo I ~a B e B nns BN s B e

and

p = (&x/oy)  or (Ay/ix)

depending on how one orders the equations. By inspection
NJ/2w >
rfow | > 1

for all j ; and hence for large s , equation (10.1l) leads to a
numerically unstable algorithm. A similer result holds for the nine
point difference approximation to Poisson's equation. Using the five
point approximation with uniform mesh and any number of grid points,
equation (10.9) predicts severe loss of accuracy for more than five
contractions on a CDC 6600; and this has actually been observed. As
noted in Section 3, Hockney [6, 7] has combined one or more steps of

CORF with the fast Fourier transform to produce a Poisson solver. For

such a use of CORF one must pay careful attention to the above results.

The cyclic odd/even reduction method can be used successfully
for solving tridiagonal systems of equations. In that situation, one

must make provision for the fact that overflow can occur during the

reduction stages.

O e vl e e ——— A < g e s
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1l. The Buneman algorithm and variants

In this section, we shall describe in detail the Buneman algorithm
[2] and a variation of it. The difference between the Buneman algorithm
and the CORF algorithm lies in the way the right hand side is calculated
at each stage of the reduction. Henceforth, we shall assume that in
the system of equations (2.5) T = Ip » the identity matrix of
order p .

Again consider the system of equations as given by (2.5) with
1

qQ= 2k+ -1 . After one stage of cyclic reduction, we have

2
Xjup (Bl = ANXs * Xpp = ¥51 ¢ Yy - Y (11.1)

-~ )=

fq+1 = S s the null vector. Note that

the right hand side of (11.1)may be written as follows:

for j = 2,4,...,9-1 with X, =

(1)

- - a(1)-1 -1
Vi Tyt Yy c Ay = ATTATY Yy Yy - ATy (1.2)

where A(l) = (21p - A2) g

Let us define

(1) _ 41 (1) _
Z el

Then
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After r reductions, we have by (3.3)

(r+1) (y(r) er(r)) alm) =) (11.4)

'
~ S LT %3

Let us write in & fashion similar to (11.3),

z(r) - alr) Bgr) + qgr) i (11.5)

Substituting (11.5) into (11.4) and making use of the identity
(A(r))2 = 2IP _A(r+l) from (3.3), we have the following relationships:

o(F*) (r) - @) @) )y (11.6a)

2 “y-2t Fpe2t

(r+1) _ (r) ( r+l)

3 = 3;21' * Sdr;r - "’E’g (al<cn)
for § =121 (1 -1,2,...,25T1) witn

<(>r) ~S;21_q(()r) q(gl o

To compute (A(r)) (p(r) + p( )r - qgr)) in (11.6a), we solve the
J-2 ~j+2 ~

system of equations

(r)( (r) £§r+l))
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where A(r) is given by the factorization (3.10), viz.

21‘

(r) _ (r)
A\t -jLL (A+2cos 07 1) ,

ogr) = (2j - /2=,

After k reductions, one has the equation

A0 400 (9 4 ()

~2 ) ~2
and hence
(k) (k)y-1 (k)
x, =p. + (A7) " q
,.,2k ..2k "Qk

Again one uses the factorization of A(k) for computing (A(k))'l q(i) .
~2

In order to back solve, we use the relationship

x L+ A(r) X, +x = alr) pgr) 4 Q§r)
~y.2 ~d ~je2 g =
kt1l-
for j = 121‘ (1 = 1,2,...,2 1‘_1) with fO i k+l =S )

~2

k+l

For J = 2r,3-2r,...,2 -2f s we solve the system of equations

ﬁﬂ@ 'ﬂﬂ)=gﬂ'(f tE ) (11.7)

j-2f g+t

using the factorization of A(r) 3 hence

11-3




F EJ = Pgr) + (?fj = Pgr)) . (11.8) N
}

{ Thus the Buneman algorithm (variant 1) proceeds as follows:

I 1) Compute the sequence (ggr) 5 ggr)} by (11.6) for i

— r = l, .o a,k With ng) =@ fOI‘ J =i o, .. -,2k+l ] and §

E 0] k+1 P
g‘g ) =¥j for ,j = 1,2,...,2 -l .

TN §

2) Backsolve for X, using (11.7) and (11.8).

=

It is possible to eliminate the sequence {pgr)} . From (11.6b),

we note that

/|

i (r+1) _ 1, (r) (r) (r+1) 1
I B et Gy ) (11-9)
where ‘
e ﬂ |
Using (11.9) in (11l.6a) and modifying the subscripts and superscripts ’ '
appropriately, we have
(e#1) _ (r) _ (r-1), (r) _ (z-1), (r) |

34 =%.on " Yon T YT T Y T Yeon

@y o ¢ Y - 2t

o afetl - G gl (11.10)

T am am em e Mmoo
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.: for j = (25,271, ..., 25 12Ty witn
| (r) _ (x)
! r
. dn * = 1 :+1 = 6 for all r ,
. x gl
|
BBl (0)
‘l\ 0
g - SJ = ;{j fOI‘ j:" 1’2, lo-’2k+l-l 9
‘ .’
P on
] '; ‘e (l) —= oy [ -1 2 __ k+1
: 9']' = ij_l + .y'j'!'l - 2A Zj fOI’ ) & 2,"‘,--:,2 -2 3
; 5
! To golve for x, , w2 use the relationships (11.7) end {11.9) so that
| L } LY
i A
| 1 (), ) ()
B oA N VR P
F =
&
' 3 (r)y-1 . (i)
’{ - AT oyt By - Yy ) (1.11)
{ éi Thus the Buncman slzorithm (variant 2) proceeds as follows:

1) Compute the sequence {qgr)} by (11.10) for r = 1,25.0u5k &

& e §
Pomcr§

2) Backsolve for x. using (11.11).
~.

F«\\w

llote that the Buneman algorithm (variant 2) requires half the storage

‘. -1

that the Buneman algorithm (variant 1) requires. Howecver, the

variant 2 algorithm requires approximately twice as many additions.

[y

The p, 's and qJ 's can be written in terms of the xj 's. In
~ ! ~ ~,

| =]

Section 15, we shall show how this affects the stability of the methods.

Note =

a bl

11-5
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_ =3 =

Py mA Ty = x ATy X )
and
(1) _ (1)
35 "Y1t Y1 - %Ry
. 1,(2)
= ¥ipm (AT AT ) x L) v,

By an inductive argument, it is possible to show that

or-1
ggr) - x, ¢ (-1)THL s(r){ kzd (%) _(are1) * .’f,j+(2k-1))} (11.12)

and

r-1
(r) - + (_1)1‘ S(r) A(r) 22 ( + x ) + x
IR = \Zj-(2k-1) T Xjr(2k-1) = yeot (11.13)

where

S(r) n (A(r-l) A(r-Q) - A(O))'l
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12. Applications of the Buneman algorithm to Poisson's equation

As was pointed out in Section 4, matrices of the form (2.5)
arise in solving the five point finite difference approximation to

Poisson's equation over a rectangular region with Dirichlet boundary

conditions and hence it is possible to use the methods of Section 11.

For the five point approximation to Poisson's equation over & rectangular
region with Neumann or periodic boundary conditions it is necessary to
modify the Buneman algorithms.

For the Neumann boundary conditions, we have the system of

equations
Afo * 23,{]_ = XO
fj-l * Afj N l‘j+1 = ZJ = 2585 o0 gy 5
x .+ Ax =y WEh m ea
~m=1 ~m im
We define
(1
v ) = A(l)p§l) + q;(jl) for j = O,2,’+,...,2k+l
where
1 -1 1 1
o = aty s o ca -l
1 -1 1 o
p( ) = A Y. 3 q( ) =y, +y. _gp( ) (j=2’h,.”’m_2),
~J ~3 7 < ~J=1  2j+1 =9

e(gm-l B grfll) )

I
=
<
42
P
i

l12-1
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) In general then, as in Section 11, we have for r = 1,2,...,k=1
SN
i fTHL) _(r1) (24])  (r41)
" Y3 5 Y
|
f . where
RRE
| "i. pcﬁl) = pér) (A(r))'l(@éi) qor)) ) qérﬂ) - 2(gé§)-pér+l))
' i (r+1) _ _(r) _,p(r)y-1, (r) (r) (1‘) (1“"1) - +o(T) (r+1)
% | 23 py - () (Pj_2r+?j+2r ) 4 qﬂ aT §J+2 I
| for j =12t (i =1,2,...,257T.1)
K
: ~I§1r+l) I$‘r) (A(r))-l(z‘y(r)r _Bélr)) , %ﬁrﬂ) B 2~(r)r_2gsnr+l)
m-2 Me?
B Finally,
] z(fl) - plk*1) gél}:*l) ¥ g;}:ﬂ) (12.1)
} where
] p(#1) _ g . (a(0))2
] ~S§+1) p; ) o 6 Lplk) o p(‘;ll ~;k)) , (12.2)
k+1 k (k k+1)
g ;k )'qc(>)+qk21 ’*E;k
ﬂ 12-2




From (5.4) we see that

J

section.

Ax, ++ x5 * X

+
Kp g Ak F

+ + =
fl fm-l Afm

Gl GI U d el bmd bmd b bl bewd ey

The backsubstitution process proceeds as in Section 11.

' p(2)y L () (2) o (2)

: ~2 ~2 ~2

!

|

i = so that

| .

L - (k+1) (k+1)\- _(k+1)

' \ X k = p k + (B ) q. k Q

’ i ~2 T2 e

; -

-

§ i (B(k+l))'q(§+l) indicates a solution to the singular system
- ~2 s
:? B(k+1%x - p(k+l)) = q(k*l) . The factorization of B(k+l)
X B = "

possible to elimineie the p(r) gsequence as was done in the previous

For periodic boundary conditions, we have the system of equations

y, fOI‘ j = 2,5,.-.,“}'1 s

We define
X:(jl) L A(l)ggl) + ggl) for j = 2,11-,..-,2}?*.1
where
12.3
i:«.ﬂipw—-

is given by (5.6).

It is also




fotipatitiscrme o SOSRMAME QUM o U ILAR eANES s =t PR A -
: 'y T
. ]
-

pél) = A-lyz ) él) = Xl + y} - 2.9:()_1) )

~ ~

pt) -nly, SD SR ALY QEgl) r Q= h6eene)

1 -1 1 1
E’;()):A I 2 S,f.)=!1*§'m-1'25£)

t
1

: In general for r = 1,2,...,k=1,
IE;. § g”l) alr1) g’“’l) g”l) for § =125t (1 =1,2,...,257)
! ? where
(r+1) _ (r) (£))-1(0) o (8) (@) y () (2), o (x) o (1)
[ P2r+1 = P :"‘l - (A o ) (Bzr 3y 2 '~2;+1)) q :“'l 2r 3y 2 I"'l )
(r+1) _ (r) (r) -l (r) r) (r) (r+1) (r) , . (r) (r+1)
:‘ 5 (A7) 2yef §J+2r 4 ) gy 33_2 et °;

 Sh—

r~n

~m

B« g G gl ), o) L gl o) (end)

m-2

"m-2

Finally as (12.1),

.
}J (k+1)  _(k+1) _(k+1) . (k+1)
y =B P tq
ﬂ ¥k L L
where
= 12-4




(krl) _ (k) _ o (K)y=1pp (k) (k) (k+l) = po() ) (k1)
Pk P ok (&) (222k+1 ) L x kel ” "k

and B(k+1) is defined by (12.2). Then

ey
LI .

pD), . p(ird) (1), (1)

12 ~e ~e .
so that

f k+l k1) - (k+l

~2 e ~2 i
- The backsubstitution process proceeds as in Section 1l1. ]
*: It is possible to express p( r) and qgr) in terms of x 2, as in
- equations (11.12) and (11.13).
|
i -4
o
i
i ;.
1 :

1
1
] 12-5
i
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13. Accuracy of the Buneman Algorithms

As was shown in Section 11, the Buneman algorithms consist of ]

generating the sequence of vectors {p(r) ,qgr)} . Let us write using

3 3
(11.12) and (11.13)

1
[ |

; 7 Bgr) - fgr) 5 §§r) (13.1a)

3 ’ ( 3
[ AT (13-20) |
W where }
J , 2r-l 5 ,
_ g7 = (07T ey * 2z (12-2) |

s(*) o (alr-1) a0yl (13.3)

Then

2 - =0 < 1s®, =) (13.4)

I - erx s A, e (13.5)

where
|| v ||2 indicates the Euclidean norm of a vector v,

Ilc ||2 indicates the spectral norm of a matrix C , and

e = 5 el -

R D N eam am Oom O o
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When T = Ip , we may redefine the polynomials given in Section 3

in the following way. Let
V= 'a/ 2 ,
and define

cos © for Iwyl <1

<
it

cosh © for |\|/| > 1

Then in a similar fashion to (i0.8),

1

-2 cos(2k cos V) for |yl <1

pek(a)

-2 cosh(.?k cosh™t v) for |yl >1 .

Thus for A = AT ’

-1
s, =TT lal@)-2i,
j=0

r=1

= Itp ,(,)172
15 Ty P

where {N,} are the eigenvalues of A . Therefore for |K1| >2,

-1
||s(")||2 = 2"'?']‘ max [cosh 2 cai]'l
=0 fo,}

where

-1
9, = cosh (- 7\1/2) .
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Finally,

-1
||s(r) A(r)l!2 =277 ) max (EIT [cosh 27 Oi]-:L x cosh 2 0,
{o;3{\J=0

vhen |\ | >2 .

For the five point difference approximation to Poisson's equation

over a rectangular region with Dirichlet boundary conditions

2 in
Ay o= =2(1+ p%(1 - cos =27))
where p = &x/Ay or (Ay/Ox) depending on the ordering of the

equations. Thus

-1 2 in
9, = cosh (1L + p(1 - cos p+l))

which implies O, >1 for all i . Then

i

max [cosh 2J 0
f0,)

ij'l = [cosh oJ {cosh'l(l + p2(1 - cos p-f—:'_))}]'l ;

o e e s W B e
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3

PR » <~
@reand pSansne

s

=3 =3

o) i el

Thus after some simplification,

( ) -c°l -cQ
r e 1
= 6
”S ”2 r-l -2J+l° < e (15° )
(1+e 1
3=0

where ¢ = 25-1, cosh @, = 1+ pe(l - cos %) .

1
A similar calculation shows

e
Iale) s(r)u2 <2e? ; (13.7)

Therefore from (13.6) we see that for large r , pgr) will be a

good approximation to xJ. . And from (13.5) and (13.7), we see that

Q
o™ - x crx ol s 2e? Nl

so that the ||q§r)|!2 remains bounded throughout the calculation. This
explains why the Buneman algorithms lead to numerically stable results

for solving the finite difference approximation to Poisson's equation.

13-k
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1%. Conclusions

The Appendix contains the results of some numerical experiments
involving the application of the Buneman algorithm (variant 1), the
method of matrix decomposition, the method of point successive
over-relaxation (cf. [10]), and the Peaceman-Rachford alternating
direction method (ef. [11]) to the five point finite difference
approximation to Laplace's equation over a rectangle with Dirichlet
boundary conditions. In these experiments the Buneman algorithm was

the most efficlent and accurate; however, the method of matrix

decomposition was competitive in several cases. We conclude, therefore,

that the Buneman algorithm and the method of matrix decamposition

are useful methods in the situations where they apply.
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Appendix

Numerical Experiments

In order to gain computational experience with the methods of matrix
decomposition (MD) and the Buneman algorithm (variant 1), it was decided tor
apply the algorithms to the five point difference approximation of Laplace's
equation with Dirichlet boundary conditions. 1In addition, in order to
compare these methods with established methods, it was decided to apply
the methods of point successive over-relaxation (SOR) (ef. [10]) and
Peaceman-Rachford alternating direction method (PR) (ef. [11]) to the
same problems. We did not attempt to determine which method is best in
general. Those interested in operation counts, variations of these direct
procedures, and customizing the direct procedures for particular problems
are referred to [4] and [7].

The following problems were chosen so that the computed error could

be detemined exactly:

H

Problem 41, u =1 ;

Problem #2, u = cos(x) cosh(y) ;

e (sin(y) + cos(y)) ;

xs - le5y2 + 5xyh c

Problem 43, u

Problem 44, u

Let
<computed solution of the difference equation>

[« ]
]

and

(n’ffj;){lﬁ I, 1.0} ;

the tabulated error is

max Iﬁ - u|
(mesh) d

One should note that in many cases the tabulated error is the truncation

error of the difference equation.

A-1
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Each of these problems was solved on the following meshes (includes

boundary points):

Mesh #1 20 by 129 ,
Mesh #2 40 by 129 ,
Mesh #3 80 by 129 ,

Mesh #4 129 vy 129 ,

Let p = &x/Ay . Each of the four problems was solved on each of the

four meshes for five values of p :

o ax & 24
1 .025 .oooes' .01
2 .025 .0025 1
3 .025 .025 1.0
L .0025 025 10.0
5 .00025 .025 100.0

Thus each problem was solved on & total of twenty rectangular regions.
These regions were chosen such that the lower left-hand corner of the
rectangle was always at the origin. The following is e table of the

coordinates of the upper right-hand corners:

Mesh #1 Mesh #2 Mesh #3 Mesh #k
oy (.5, .032) (1., .032) (2., .032) (4., .032)
Po (.5, .322) (1., .322) (245, .322) (4., .322)
P3 (.5, 3.225) (1., 3.225) (2., 3.225) (4., 3.225)

p, (.05, 3.225) (.1, 3.225) (.2, 3.225) (b, 3.225)

(.005, 3.225) (.01, 3.225) (.02, 3.225) (.0k, 3.225)
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We define

V(p,1i,J) = max {solution of prob #p on region with Py and mesh #j}

- min {solution of prob #p on region with p 4 and mesh #33

Note V(1,r,3) =0 for all i and J .

for the other problems:

V(2,1,3)

Mesh #1
£y erls
Po .15
05 11.1
p5 11.0
v(3,1,3)

Mesh #1
) .59
fje '95
p5 5,8&
P 2.46

NPT TR
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Mesh #2
A2
A7

11.k

11.0

11.0

Mesh #2
1.6k
2.2k
6.32
2.7
2.47

Mesh #3
1.37
1.h4

16.4

11.

11.

Mesh #3
6.22
7.8k

17.2
2.97
2.5

The following tables give V

Mesh #b
2.0
2.1

24.0

11.

Mesh #4
23.6
29.2
58.5
3.36
2.5
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V(k,1,3)

e,

Mesh #1  Mesh #0 Mesh #3  Mesh #4 .

—i Py .018 77 28.2 323.0
. Po .07 .92 28.3 28340
: 4 Pz 219.5 400.0 556.0 1733.0 |
g Pl 22.9 48.2 98.2 158.0 | |
: Ps 2.29 L.82 9.9 16.1 ! :

—
O |

For the above rectangles, the optimum relaxation factor is given by |

1

mb(i,,j) =

n

where , .
2 n n i
Py COS(NJ T l) + COS(m) | |
B = Dy
3, 2 -
: 2(o% + 1) ¥
and N, 1s the number of grid points in the x-direction of the j-th mesh.

J
The initial guess for SOR and FR was the zero vector.

The iteration process was terminated when

+1
max Un——n' v < lO"l‘L :
(entire mesh) U
|v®] > 107

Optimum PR parameters were determined by Wachspress's algorithm [11]

e G o ra




|

for cycles of length Ek . Convergence required

=1 ey pun

n+l n
n max max % < 10'“ .
(complete cycle) (entire mesh) U
- n -5
i U > 10
{ o7 J
] Because of this convergence criterion, a short cycle was desirable.

After some experimentation, it was decided to use a cycle length of
four exclusively.
All problems were run on a CDC 6600 (about 14 decimal digits of
i accuracy); ‘the PR, MD, and Buneman programs all used the same tridiagonal

system solver. The @Q matrix and eigenvalues required by MD were

L]
f S ]

computed with the QR algorithm for symmetric tridiagonal matrices. The

metrix multiplications (QTy) required by MD were performed with a

=

machine language inner product routine which is quite efficient and
which accumulates the inner products in double precision. It should be
noted that for problems with uniform mesh spacing, these matrix products
may be performed with the fast Fourier transform; and this makes MD
competitive in speed with the Buneman algorithm. However, MD is capable

of handling more general problems such as those with non-uniform mesh

spacings; in these cases Q must be computed and the matrix products
performed. Thus the MD routine used in this study gives an indication
of the kind of performance one might expect with these more general
problems. Note also that the matrix multiplication (QTX) requires
O(q_'pe) operations. The Buneman algorithm requires a total of
0(qp log, p) operations. Thus as p becomes small,

MD spproaches the Bunemean algorithm in speed.
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The following tables of computation times are normalized by the

time required for the Buneman algorithm on Mesh #1:

Computation times for the Buneman algorithm (variant 1) and MD

Mesh #1 Mesh #2 Mesh #3 Mesh fth

Buneman 1.0 2.08 4,31 6.96
MD 1.18 3.65 1k.9 Li.0

Computation time for FR

(These times are averages over all four problems.)

Mesh #1 Mesh #2 Mesh #3 Mesh #4

Py 2.56 5.17 9.k43 15.2
Py 4.85 10.3 20.6 DOl
p3 5,44 12.6 31.2 W7.7
Py, 2.56 7.61 15.2 32.5
Ps 2.25 4. ko 8.58 135

Computation time for SOR

(These times are averages over all four problems.)

Mesh #1 Mesh #2 Mesh #3 Mesh #u

N 40.9 89.0
P 5.1 97.9
Pz 16.1 60.1 (not run)  (not run)
Py, 7.58 32.9
P 7.22 28.8
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Relative error for the Buneman algorithm, Mesh #1

Prob 1 Prob 2
Py 4(-11) 7(-9)
o, 2(-11)  5(-7)
Pz 5(-13) 2(-6)
N 2(-13) 1(-8)
Ps 2(-13) 1(-10)
Reletive error for MD, Mesh #1
Prob 1 Prob 2
o, 5(-7) 5(=T)
op 1(-T) 5(=7)
Pz 1(-9) 2(-6)
Py, 2(-10) 1(-8)
Ps 8(-10) 7(-10)
Relative error for PR, Mesh #1
Prob 1 Prob 2
pp  2(-11)  7(-9)
Po 2(-8) 5(=T7)
P3 7(-8) 2(-6)
Py, 2(-9) 1(-8)
8(-13) 1(-10)

Prob 3
6(-9)
b(-T)
2(-6)
1(-8)
1(-10)

Prob 3
L(-7)
k(-7)
2(-6)
1(-8)
7(-10)

Prob 3
6(-9)
L(-7)
2(-6)
1(-8)

1(-10)

Prob k4
5(=T)
2(-5)
L(-7)
2(-9)
2(-11)

Prob L
3(-T)
2(-5).
L(-7)
2(-9)
6(-10)

Prob b
5(-7)
2(-5)
L(-7)
2(-9)
2(-11)




Relative error for SOR, Mesh #1

Prob 1 Prob 2 Prob 3 Prob k4 ;

i o M) MM M) 38 |
) oo 13 U3 U 25) | |
| by S(-B) LB AW (D) '
i oy 3B 3R 3(H) 9(-6)

ps  3(-h) 3(-4) 3(-4) 5(-5)
E
|

Relative error for the Buneman algorithm, Mesh #2

_—

Prob 1 Prob 2 Prob 3 Prob L
k(-11) 7(-9) 6(-9) 7(-7)
Po 3(-11) 6(-7) L(-7) 5(-5)
2(-12) 5(-6) 7(-6) 2(-6) |
b, 3(-13)  5(-8)  6(-8)  8(-9) |
7(-13)  6(-10)  6(-10)  8(-11) !'

= o e e T T A e - [

—d
v
=

B Relative error for MD, Mesh #2

Prob 1 Prob 2 Prob 3 Prob L
i by U 8(-B)
b, 5(-8)  6(-1)
b5 2(-9)  5(-6)
b, 2(-9)  6(-8)
5(-0)  1(-9)
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Relative error for PR, Mesh #2

Relative error for SOR, Mesh #2

Prob 1 Prob 2

2(-n)  7(-9)
L(-8) 6(-7)
4(-6) 4(-6)
8(-10)  6(-8)

3(-12) 6(-10)

Probl  Prob 2

(k) b (-1)
7(-4) 5(-k)
1(=3)  6(-k)
5(-4) L(-k)
L(-k) b(-b)

Prob 3
7(~9)
(-7)
7(-6)
6(-8)
6(~10)

Prob 3
5(-k)
3(-4)
2(-k)

6(-5)

b(-k)

Prob L
7(-1)
5(-1)
2(-6)
8(-9)
7(-6)

Prob 4
2(-k)
5(=5)
2(-6)
7(=7)
8(-5)

Relative error for the Buneman algorithm, Mesh #3

) .
b it B el it K

Prob 1 Prob 2

L(-11) 7(-9)
3(-11)  6(-7)
1(-1)  8(-6)
b(-13)  2(-7)
2(-12) L e(-9)

Prob 3
6(-9)
L(-7)
1(-5)
2(-7)
3(=9)

Prob 4
5(-8)
5(-6)
1(-5)
3(-8)
53(=9)
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Relative error for MD, Mesh #3

Prob 1 Prob 2

p;  1-9) 8(-9)
o, 1(-9) 6(-7)
5  8(-10) 8(-6)
p,  8(-10) 2(-T)
ps  8(-10) 5(=9)

Relative error for PR, Mesh #3

Prob 1 Prob 2

py  1(-1) 7(-9)
p,  6(-8) 6(~1)
p5  3(-6) 8(-6)
o,  2(-7) 5(-1)

ps l('ll) 3(’9)

Prob 3
7(-9)
L(-7)
1(-5)
2(-T)
3(-9)

Prob 3
6(-9)
4(-7)
1(-5)
2(-7)
53(-9)

Prob k4
5(-8)
5(-6)
1(-5)
3(-8)
7(~10)

Prob b4

5(-8)
L(-6)
1(-5)
3(-8)
3(-10)

Relative error for the Buneman algorithm, Mesh #u4

Prob 1 Prob 2

pp  4(-1) 7(-9)
fo 3(-11) 6(-7)
p5  3(-11) 8(-6)
p,  1(-12) 5(-T)

L(-12) 6(-9)

Prob 3
6(-9)
L(-T)
2(-5)
6(-1)
7(-9)

Prob L
8(-9)
7(-1)
1(-5)
8(-8)
8(-10)

e ————
e e e et e e -




Relative error for MD, Mesh #k

Prob 1 Prob 2 Prob 3 Prob 4
7(-7) 5(-7) L(-7) 4(-7)
2(-9) 6(-7) L(-7) 7(-7)
2(-9) 8(-6) 2(-5) 1(-5)
3(-9) L(-T) 6(-7) 8(-8)
3(-9) 9(-9) 9(-9) 2(-9)

Relative error for PR, Mesh #4

Prob 1 Prob 2 Prob 3 Prob L
1(-12)  7(-9) 69 8(-9)
6-8) 6= W=D (=7
1-5)  B(-6)  2(=5)  1(-5)
6(-8) M) 61 8(-8)
3(-11) 6(-9) 7(-9) 8(-10)
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